Strong convergence of Euler–Maruyama schemes for McKean–Vlasov stochastic differential equations under local Lipschitz conditions of state variables

نویسندگان

چکیده

Abstract This paper develops strong convergence of the Euler–Maruyama (EM) schemes for approximating McKean–Vlasov stochastic differential equations (SDEs). In contrast to existing work, a novel feature is use much weaker condition—local Lipschitzian in state variable, but under uniform linear growth assumption. To obtain desired approximation, first establishes existence and uniqueness solutions original SDE using Euler-like sequence interpolations partition sample space. Then, returns analysis EM scheme SDEs. A theorem established. Moreover, rates global conditions are obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

strong approximation for itô stochastic differential equations

in this paper, a class of semi-implicit two-stage stochastic runge-kutta methods (srks) of strong global order one, with minimum principal error constants are given. these methods are applied to solve itô stochastic differential equations (sdes) with a wiener process. the efficiency of this method with respect to explicit two-stage itô runge-kutta methods (irks), it method, milstien method, sem...

متن کامل

Global Flows for Stochastic Differential Equations without Global Lipschitz Conditions

logR. We regularize the stochastic differential equations by associating with them approximating ordinary differential equations obtained by discretization of the increments of the Wiener process on small intervals. By showing that the flow associated with a regularized equation converges uniformly to the solution of the stochastic differential equation, we simultaneously establish the existenc...

متن کامل

On Exact Convergence Rate of Strong Numerical Schemes for Stochastic Differential Equations

We propose a simple and intuitive method to derive the exact convergence rate of global L2-norm error for strong numerical approximation of stochastic differential equations the result of which has been reported by Hofmann and Müller-Gronbach (2004). We conclude that any strong numerical scheme of order γ > 1/2 has the same optimal convergence rate for this error. The method clearly reveals the...

متن کامل

Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients

We are interested in the strong convergence and almost sure stability of Euler-Maruyama (EM) type approximations to the solutions of stochastic differential equations (SDEs) with non-linear and nonLipschitzian coefficients. Motivation comes from finance and biology where many widely applied models do not satisfy the standard assumptions required for the strong convergence. In addition we examin...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ima Journal of Numerical Analysis

سال: 2022

ISSN: ['1464-3642', '0272-4979']

DOI: https://doi.org/10.1093/imanum/drab107